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Abstract. The quantum statistical mechanics of an ideal gas with a general free-particle energy obeying
fractional exclusion statistics are systematically investigated in arbitrary dimensions. The pressure rela-
tions, the relation between pressure and internal energy, the equation of state, as well as the thermodynamic
properties are thoroughly discussed. Some novel results are obtained.
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1 Introduction

In standard textbooks, quantum statistics usually refers to
the well-known Bose and Fermi ones. The former admits
that a state under permutation is symmetric, leading the
maximum occupation number of particles in one state to
infinity, while the latter requires that any state under per-
mutation should be antisymmetric, giving rise to the max-
imum occupation number in one state being one. These
two statistics are of fundamental significance for our un-
derstanding of the real physical world nowadays. Indeed,
a great number of physically basic phenomena have been
successfully explained within the framework of these two
celebrated statistics. Are they, however, adequate for us
to describe all macroscopic properties of the nature? The
answer could be no. As a matter of fact, after invention
of these two statistics some people have been considering
how to generalize the quantum statistics to cover many
other cases. A few such generalizations have therefore been
done up to date.

One generalization is the so-called parastatistics (in-
cluding para-Bose and para-Fermi statistics) [1]. Such a
kind of statistics is obtained in the following way: The ex-
pectation value of any observable in the permuted state
is required to be the same as in the unpermuted state. It
thus brings about two cases. The para-Fermi statistics al-
lows up to a finite number (greater than one) of particles
occupying one state, while the para-Bose statistics allows
that the wavefunction in one state vector can be antisym-
metric with respect to a finite number (greater than one)
of particles but keeping the maximum occupation number
to infinity. This generalization has some implications in
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quantum field theories, and is extensively studied in past
decades.

Another generalization is named as the intermediate
statistics [2]. This statistics is obtained by simply pos-
tulating that the maximum occupation number (denoted
by ν) of particles in a single-particle state is finite, which
naturally interpolates between Fermi (ν = 1) and Bose
(ν =∞) statistics. However, there is neither a mathemati-
cal basis for the symmetry properties of wavefunctions nor
any generalized field quantization scheme available for in-
termediate statistics. One of implications of this statistics
can be attributed to magnons in the Heisenberg model
of magnets. As is well-known, the maximum number of
magnons in a system with a given number of spins is fi-
nite, suggesting that magnons are not exactly bosons.

There are other generalizations (e.g., the q-deformed
Fermi and Bose statistics (see, e.g. Refs. [3]) motivated
by the quantum group theory, etc.). The most recent and
more physical generalization is the famous fractional ex-
clusion statistics (FES), first proposed by Haldane [4] and
then realized by Wu [5]. Inspired by studies in the frac-
tional quantum Hall systems and in one-dimensional (1d)
exactly solvable models, and by considering many particle
systems with finite dimensional Hilbert spaces where the
dimensionality of the single-particle Hilbert space depends
linearly on the total number of particles, Haldane [4] de-
fined the exclusion statistics through the changes of the
dimension of the single-particle space and the number of
particles. By interpolating the statistical weights of Bose
and Fermi statistics, Wu [5] in his seminar paper derived
the distribution function of FES, which is usually called as
Haldane-Wu distribution function in literature. Recently
it becomes aware that the physical realizations of FES and
associated generalized ideal gas can be reached in 1d in-
tegrable models with long-range interactions of quantum
fluids where the particles are shown to obey FES, in the
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lowest Landau level where anyons are shown to obey FES,
and in the fractional quantum Hall effect where the quasi-
holes and the quasi-electrons obey FES [6]. Consequently,
since the appearance of Wu’s remarkable paper a number
of works on FES have been done [7–15]. However, some ba-
sic issues, for instance, the fundamental pressure inequal-
ities which are well known for Bose and Fermi statistics,
a general relation between the pressure and internal en-
ergy (Bernoulli equation), as well as the thermodynamic
properties, etc. on quantum statistical mechanics (QSM)
of FES still need to be unambiguously addressed. As FES
has essential implications in low-dimensional physical sys-
tems, a thorough discussion on it is really interesting and
necessary.

The outline of this paper is as follows. In Section 2
the definition and the basic formulae of FES are briefly
recalled. The pressure relations, a relation between the
pressure and internal energy, the equation of state, as
well as the thermodynamic properties are presented in
Sections 3–6, respectively. Finally, a summary of results
is given.

2 Fractional exclusion statistics

Let us first briefly recall the definition and some basic
formulae of FES in this section, which will be used in
the subsequent discussions. By adopting a state-counting
definition, Wu [5] managed to write down the statistical
weight, say, the number of quantum states of N identical
particles obeying FES occupying a group of G states, as

W =
[G+ (N − 1)(1− g)]!

N ![G− gN − (1− g)]!
, (2.1)

where the statistics parameter g represents the number
of states that one particle can “occupy”, or the abil-
ity of a particle to exclude other particles in “occupying
single-particle state”, with g = 0 corresponding to usual
bosons and g = 1 fermions. (Hereafter we only consider
0 ≤ g ≤ 1). By assuming that an ideal gas, where every
single-particle state of species i has the same energy εi, is
a system with the total energy taking a simple sum

E =
∑
i

Niεi, (2.2)

and using the standard argument of QSM, he obtained the
grand partition function

Ξ =
∑
{Ni}

W ({Ni}) exp{−β
∑
i

Ni(εi − µ)}, (2.3)

with β = 1/kBT the inverse temperature (kB the Boltz-
mann constant) and µ the chemical potential. The most-
probable distribution of ni, the average “occupation num-
ber” defined by Ni/Gi, for identical particles was shown
[5] to be determined by

ni =
1

ω(eβ(εi−µ)) + g
, (2.4)

where the function ω(ξ) satisfies the functional equation

ω(ξ)g[1 + ω(ξ)]1−g = ξ ≡ eβ(ε−µ). (2.5)

Equation (2.4) is the so-called Haldane-Wu distribution
function. The thermodynamic potential Ω and the total
number of particles N can thus be obtained by

Ω = −PV = −kBT
∑
i

Gi log(1 +
1

ω(ξi)
), (2.6)

N =
∑
i

Gi
1

ω(ξi) + g
· (2.7)

We note that the above equations are formulated in the
representation of states. By recognizing the fact that the
grand partition function at the most probable distribu-
tion can be factorizable, like the usual Bose and Fermi
cases, the summation over states in above equations can
be converted into that over momentum [15]. The average
occupation number in momentum space can be written
down as

〈np〉 =
1

ωp + g
(2.8)

with the function ωp satisfying

ωgp(1 + ωp)1−g = eβ(εp−µ). (2.9)

The thermodynamic potential and the total number of
particles can then become as

Ω = −PV = −kBT
∑
p

log(1 +
1

ωp
), (2.10)

N =
∑
p

1

ωp + g
· (2.11)

These are basic equations useful in the subsequent analy-
ses.

3 Pressure relations

It is well-known that for standard Bose and Fermi statis-
tics the corresponding pressures (PB and PF ) of the ideal
gases satisfy the following inequality [16]

PB < Pcl < PF (3.1)

for the fixed density ρ = N/V , where Pcl is the pressure
of an ideal gas obeying Maxwell-Boltzmann statistics (or
classical statistics henceforth), given by

Pcl = kBT
N

V
= ρkBT. (3.2)

The physical meaning of the inequality (3.1) is as fol-
lows. The quantum effects in Bose and Fermi statistics
introduce the so-called effective “statistical interactions”.
The particles obeying Fermi statistics tend to expel other
particles more than those obeying the classical statistics
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(in the latter case no any interaction exists between par-
ticles), while the particles obeying Bose statistics tend to
attract other particles, yielding the possibility of conden-
sation of bosons. In other words, this inequality reflects
the consequences of Pauli’s exclusion principle and Bose-
Einstein condensation.

Now let us consider if there exists a similar inequality
for FES. From equation (2.10) we know that the pressure
P is given by

P =
kBT

V

∑
p

log

(
1 +

1

ωp

)
· (3.3)

As discussed in reference [5], ωp is non-negative. By uti-
lizing the inequality log(1 + x) > x

1+x for x > 0, we find

P >
kBT

V

∑
p

〈np〉

1 + (1− g)〈np〉
· (3.4)

By equation (2.8), we have

〈np〉 ≤
1

g
· (3.5)

Incorporating inequalities (3.4) and (3.5) one can get

P > gPcl (3.6)

for fixed density ρ. This inequality states that the effec-
tive interactions between particles obeying FES is more
repulsive, implying an exclusion property of FES. When
g = 1, Inequality (3.6) recovers the second inequality of
(3.1). Therefore, the inequality (3.6) can be regarded as a
generalization of (3.1).

Now we consider the free-particle energy εp with the
following general form:

εp = c0 ·
pα

m
(3.7)

with constants c0, α > 0. When α = 2 and c0 = 1/2, it
reproduces the usual case of an ideal gas. When α = 1, the
1d Calogero-Sutherland (CS) model [9] falls into this class
with a properly scaled value of c0. However, the following
analyses hold for arbitrary α > 0. The density of states
(DOS) in d dimensions can thus be obtained by

D(ε) = A(α, d)ε
d
α−1 (3.8)

A(α, d) =
Sd(m/c0)d/α

α(2π~)d
, Sd =

2πd/2

Γ (d2 )
, (3.9)

where we have transformed the summation over momen-
tum into an integral: (1/V )

∑
p →

Sd
(2π~)d

∫
pd−1dp.

When α = d, the DOS is constant: D(ε) = A(d, d).
The cases, like an ideal gas with α = 2 in two dimen-
sions discussed in references [5,6], as well as the 1d CS
model considered in reference [9], belong to this category.
Under the condition of D(ε) being constant, by noticing

(1/V )
∑

p →
∫
D(ε)dε and ρ = A(d, d)

∫∞
0

dε

ω(ε) + g
one

can get

µ = kBT log(e
βρ

A(d,d) − 1) + (g − 1)
ρ

A(d, d)
· (3.10)

Substituting (3.10) into ∂P
∂g and working out the integral,

we find

∂P

∂g
=

ρ2

2A(d, d)
> 0, (3.11)

implying that P is a monotonically increasing function of
g in this special case. In addition, equation (3.10) implies

µ = gµF + (1− g)µB (3.12)

with µF = µ(g = 1) and µB = µ(g = 0). Considering
∂P
∂µ = ρ, it can be seen that

P = gPF + (1− g)PB (3.13)

for fixed ρ, which is also in agreement with (3.6). Note that
equation (3.13) first appeared as a comment by Suzuki [6]
for α = 2 and d = 2. To summarize, we have the following
theorem [17]:

Theorem: For an ideal gas obeying FES with constant
density of states in d dimensions, µ = gµF + (1 − g)µB,
and P = gPF + (1− g)PB for 0 ≤ g ≤ 1.

A direct corollary of this theorem is: Ξ = ΞgFΞ
1−g
B ,

suggesting that in this special case the ideal gas with
FES can be regarded as composites of usual fermions and
bosons. Unlike the assertion in reference [15] where some
errors remain in the proof, we should stress here that this
statement could not hold true for the case where DOS is
not constant.

4 The Bernoulli equation

Now let us discuss the general relation between the pres-
sure and the internal energy under assumption of the free-
particle energy with the form of (3.7). The internal energy
E can be expressed as

E =
∑
p

εp

ωp + g
= V

∫ ∞
0

D(ε)εdε

ω(ε) + g
· (4.1)

By noting
d

dε
log

[
1+

1

ω(ε)

]
= −

β

ω(ε) + g
, and integrating

equation (4.1) by part, we obtain

E

V
= −

1

β
log[1 +

1

ω(ε)
]D(ε)ε|∞0

+
d

αβ

∫ ∞
0

log[1 +
1

ω(ε)
]D(ε)dε =

d

α
P,

giving rise to the Bernoulli equation

PV =
α

d
E. (4.2)
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It can be noted that equation (4.2) is g-independent, as it
should be. For α = d, PV = E, which is fit for the case
of 1d CS model and the case of the usual ideal gas with
α = 2 in two dimensions. We would like to point out here
that equation (4.2) was ever derived for Bose and Fermi
ideal gases by Suzuki [16] for d = 3. Now, we find that the
Bernoulli equation can be extended to cover an ideal gas
with FES.

In addition, using equations (3.3, 4.2, 2.9), one can
find the pressure P (T ) can be determined by the following
functional

P (T ) = ρµ(T ) + C1T +
d

α
T

∫ T P (x)

x2
dx, (4.3)

where C1 is a temperature-independent constant that can
be determined by known conditions. This equation can be
solved numerically.

5 Equation of state
In this section, we shall discuss the equation of state,
namely, the Virial expansion for an ideal gas obeying FES.
Define

z = eβµ (5.1)

as the fugacity. In parallel to Bose and Fermi statistics
[18], we can expand P

kBT
and N/V in powers of z, and get

PV

NkBT
=

∑∞
l=1 blz

l∑∞
l=1 lblz

l
(5.2)

with bl the expansion coefficients. The Virial expansion
gives

PV

NkBT
=
∞∑
l=1

al(λ
dρ)l−1 (5.3)

with λ to be determined later, and λdρ < 1. By expanding
ρ = N

V
in the right-hand side (r.h.s.) of (5.3) in powers of

z, and comparing the coefficients of equations (5.2) and
(5.3), one can obtain the virial coefficients [18],

a1 = b1 = 1, a2 = −b2, a3 = 4b22 − 2b3,

a4 = −20b32 + 18b2b3 − 3b4, · · · (5.4)

Now, let us calculate the coefficients bl. By expanding the
logarithmic function in P in powers of ze−βεp , we have

log(1 +
1

ωp
) =

∞∑
l=1

cl(e
−βεpz)l (5.5)

for eβ(εp−µ) > 1. Since this is a standard Taylor expansion,
we can obtain the coefficients as

c1 = 1, c2 = −
1

2!
(2g − 1),

c3 =
1

3!
(3g − 1)(3g − 2),

c4 = −
1

4!
(4g − 1)(4g − 2)(4g − 3), · · · ,

cl =
(−1)l−1

l!

l∏
m=2

[lg − (m− 1)] for l ≥ 2. (5.6)

Substituting (5.5) into (3.3) yields

P

kBT
=

∫ ∞
0

∞∑
l=1

clz
le−βεlD(ε)dε

=
∞∑
l=1

clA(α, d)

(βl)
d
α

Γ (
d

α
)zl =

∞∑
l=1

bl

λd
zl (5.7)

with

bl =
cl

l
d
α

, λd =
β
d
α

A(α, d)Γ ( d
α

)
· (5.8)

Consequently, the Virial expansion coefficients are
given by

a1 = 1,

a2 =
2g − 1

2
d
α+1

,

a3 =
(2g − 1)2

4
d
α

−
(3g − 1)(3g − 2)

3
d
α+1

,

a4 = 20(
2g− 1

2
d
α+1

)3 −
3(2g − 1)(3g − 1)(3g − 2)

2 · 6
d
α

+
(4g − 1)(4g − 2)(4g − 3)

2 · 4
d
α+1

, · · · , (5.9)

using (5.4). We note that the similar results are obtained
for α = 2 [19], but our results are more general and include
the results obtained in reference [19] as a special case. The
equation of state can then have the form

PV

NkBT
= 1 + a2ρ̃+ a3ρ̃

2 + a4ρ̃
3 + · · · (5.10)

with ρ̃ = λdρ. In the limit of ρ̃ → 0, we find that the
effective “statistical interaction” is repulsive for g ≥ 1

2

and attractive for g < 1
2 . We notice that there is a similar

discussion on this point in reference [19], where he finds
that no effective statistical interaction exists for semions
(with g = 1

2 ). This is incorrect, because for g = 1
2 , a2 = 0,

but a3 > 0, suggesting the effective statistical interactions
between semions are repulsive. For ρ̃ (< 1) not so small,
to discuss the property of effective interactions between
particles obeying FES we have to take the a3 term in
above equation into account, which gives if

g≥

− 1

4
d
α
−1

+ 1

3
d
α
−1

+ 1

2
d
α ρ̃
−

√(
1

2
d
α ρ̃

)2

+
(

1

3
d
α

)2

− 1

3
d
α

+1·4
d
α
−1

2
(

1

3
d
α
−1
− 1

4
d
α
−1

) ,

(5.11)

the effective statistical interaction is repulsive. The r.h.s.
of (5.11) is smaller than 1/2, while ρ̃ → 0, it gives 1/2.
This fact implies that for the density ρ fixed there must
be a critical value gc at which no effective statistical inter-
actions exist between particles with FES. In other words,
the effective interactions between particles would be at-
tractive for g < gc and repulsive for g > gc. Here gc can
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be self-consistently determined from the following equa-
tion

ρ =

∫ ∞
0

dεD(ε) log

[
1 +

1

ω(ε, gc)

]
, (5.12)

where the chemical potential µ can be obtained through

ρ =
∫∞

0 dε D(ε)
ω(ε,gc,µ)+gc

, and the function ω is determined

by (2.9). We observe that gc depends on the density ρ.
The similar result has been reached in the case of constant
DOS and for α = 2 a few years ago [16].

6 Thermodynamic properties

From (2.8), one may find that the average occupation
number 〈np〉 is bounded by 1/g, implying that 〈np〉 can
not be macroscopically large for any momentum except
g = 0, and thereby leading to the fact that no any conden-
sation phenomenon occurs in the ideal gas obeying FES
for 0 < g ≤ 1. For the free-particle energy given by (3.7),
the Fermi energy for FES is

εF =

[
ρgd

αA(α, d)

]α
d

. (6.1)

To discuss the thermodynamic properties, we need to
perform the Sommerfeld expansion. As a result, the ex-
pansion gives

I =

∫ ∞
0

g(ε)f(ε)dε =
G(µ)

ω(0) + g
−

G′(µ)µ

ω(0) + g

+
G′′(µ)µ2/2

ω(0) + g
+
G′(µ)− µG′′(µ)

β
log

[
1 +

1

ω(0)

]
+
G′′(µ)

2β2
[ω(0) + g] log2

[
1 +

1

ω(0)

]
+
G′′(µ)

2β2
φ

[
log(1 +

1

ω(0)
)

]
, (6.2)

where g(x) is any function of x, and

f(x) =
1

ω(x) + g
, (6.3)

G(x) =

∫ x

0

g(t)dt, (6.4)

φ(x) =

∫ x

0

t2et

(et − 1)2
dt, (6.5)

with the notation G′(x) = dG(x)/dx and G′′(x) =
d2G(x)/dx2. ω(0) is determined by the functional

ω(0)g[1 + ω(0)]1−g = e−βµ. (6.6)

By using this expansion, the thermodynamic quantities
can be obtained. For instance, the density ρ = N/V can
be gained by setting g(ε) = D(ε). For fixed ρ, µ = µ(g, T )
can in turn be determined. By setting g(ε) = εD(ε), one

can get the internal energy E as

E

V
=
A(α, d)µ

d
α+1

ω(0) + g
·
d(d− 2α)

2α(α+ d)

+
A(α, d)µ

d
α

β

(
1−

d

α

)
log

[
1 +

1

ω(0)

]
+
A(α, d)

2β2

d

α
µ
d
α−1

{
[ω(0) + g] log2

[
1 +

1

ω(0)

]

+ φ

[
log

(
1 +

1

ω(0)

)]}
. (6.7)

The specific heat per volume can thus be obtained via

cV (g, T ) = (∂E(T )/V
∂T )N,V . The temperature-dependence

of cV (g, T ) can be numerically determined by equa-
tions (6.6), (6.7) and µ = µ(g, T ) self-consistently in gen-
eral. At very low temperature, T → 0, µ ≈ µ0 ≡ µ(T = 0),
ω(0) ∼ e−βµ0 , for 0 < g ≤ 1 and g 6= 0 one may find ana-
lytically

cV (g, T ) ∼ c̃0T, c̃0 ≈
π2d

3α
k2
BA(α, d)µ

d
α−1
0 , (6.8)

where we have used φ(∞) = π2/3. It suggests that at
very low temperatures the specific heat depends linearly
on temperature and goes to zero at T = 0, like an Fermi
ideal gas.

For d = α, i.e., in the case of constant DOS, we can
get a closed form for E/V :

E

V
=

ρ2

2A(d, d)
(g +

1

e
ρ

A(d,d)kBT − 1
)

+
A(d, d)k2

BT
2

2
φ

(
ρ

A(d, d)kBT

)
· (6.9)

The specific heat cV for fixed ρ is thus

cV (T ) = A(d, d)k2
BTφ

(
ρ

A(d, d)kBT

)
· (6.10)

In this case, the specific heat is independent of g for
fixed ρ, and goes to the classical value (kBρ) at T → ∞
as it should be. To see qualitatively the temperature-
dependence of the specific heat, we depict equation (6.10)
as an example, as shown in Figure 1.

The Sommerfeld expansion (6.2) could be used to in-
vestigate the magnetic susceptibility of an ideal gas obey-
ing FES to see if the Pauli paramagnetism still sustains
in the system apart from g = 1. This work is left to study
in future.

7 Summary

In this paper we investigate systematically the quantum
statistical mechanics of an ideal gas, with a general free-
particle energy, obeying FES. Almost all basic properties
of this simple system are studied. Some results appear for
the first time, and some previously obtained results are
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Fig. 1. The temperature-dependence of the specific heat for
fixed desity with constant DOS.

extended to cover more general cases. A general inequal-
ity among the pressure for arbitrary statistics parame-
ter g and for the classical and Bose statistics is obtained
for the fixed density, which could gain somewhat insight
into the effective statistical interactions between particles
with FES. For the density of states being constant, we
present a theorem for the chemical potential and the pres-
sure, which corrects some erroneous statements asserted
by other people. A general relation between pressure and
internal energy, say, the Bernoulli equation, is proved to
hold for this system. The Virial expansion for this system
is studied for a general case, and some wrong assertions
by other people are also corrected. A critical value for g,
below which the effective statistical interactions between
particles are found to be attractive and above which re-
pulsive, is predicted, and the equations used to determine
gc numerically are given. Finally, the Sommerfeld expan-
sion is done, which allows to discuss the thermodynamic
properties of the system. It is shown that at very low tem-
peratures the specific heat depends linearly on tempera-
ture and vanishes at zero temperature. For the case with
a constant density of states, a closed form for the specific
heat is presented. We expect that the results obtained
in this paper would be useful to further understand the
characteristics of the particles (e.g., anyons, semions, or
quasi-particles in the fractional quantum Hall effect and
in other low-dimensional electron or spin systems) with
FES.

Moreover, there are a lot of interesting questions re-
maining open. For instance, how to construct a theory
on QSM when weak interactions exist between particles
obeying FES, or a generalized Landau Fermi liquid the-
ory using FES, how to make the results obtained in this
paper experimentally measurable, and if there also exists
the de Haas-van Alphen effect in the system with FES,
and so forth, deserve to discuss and to explore. Therefore,
many fascinating but difficult problems remain in this new
field.

Note added in proof

After acceptance of this manuscript, we were informed by
S.B. Isakov, S. Ouvry and H. Ujino that the papers in

reference [20] are relevant to the present paper. We thank
them for pointing this out to us

One of authors (GS) expresses his faithful acknowledgements
to Prof. J. Zittartz for spending very pleasant and profitable
time in his group, and cordially wishes him many more happy
years in scientific activities. He is grateful to the Department
of Applied Physics, Science University of Tokyo, for the warm
hospitality, and to the Nishina foundation for support. This
work has also been supported in part by the CREST (Core
Research for Evolutional Science and Technology) of the Japan
Science and Technology Corporation (JST).
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